Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kevin K. Klausmeyer* and Fernando Hung

Department of Chemistry and Biochemistry, Baylor University, One Bear Place \#97348, Waco, TX 76798-7348, USA

Correspondence e-mail:
kevin_klausmeyer@baylor.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.086$
Data-to-parameter ratio $=21.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[Bis(2-methyl-1-pyridyl)phenylphosphine- $\left.\kappa^{2} N, P, N^{\prime}\right]$ trichlorochromium(III) acetonitrile solvate

In the title molecular structure, $\left[\mathrm{CrCl}_{3}\left\{\mathrm{PPh}\left(2-\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right\}\right]$-$\mathrm{CH}_{3} \mathrm{CN}$, the $\mathrm{Cr}^{\mathrm{III}}$ atom exhibits an octahedral coordination geometry, with a tridentate ligand capping one face of the octahedron and three Cl^{-}ions occupying the opposite face.

Comment

The synthesis of tricarbonyl compounds of tungsten, molybdenum, and chromium, displaying an octahedral geometry with a tridentate ligand has been reported (Lindner et al., 1983). Bis(2-methyl-1-pyridyl)phenylphosphine, which has been demonstrated to be a flexible ligand, possesses a natural bite angle that is ideally suited for capping the face of an octahedron. Taking also into account the intrinsic electronic properties of phosphine ligands, bis(2-methyl-1-pyridyl)phenylphosphine has been found to coordinate either as a bidentate or tridentate ligand. This ligand coordination flexibility can potentially allow the synthesis of di- and polynuclear complexes that are of great interest in many fields, such as catalysis, bioinorganic chemistry and materials sciences (Gavrilova \& Bosnich, 2004). In this study, we present one of the coordination compounds involving this tridentate ligand with chromium chloride in an octahedral geometry.

(I)

The $\mathrm{Cr}^{\mathrm{III}}$ atom in (I) is six-coordinated by three Cl^{-}ions, two N atoms and one P atom (Fig. 1). The cis angles about the Cr atom reveal a distorted octahedral coordination environment (Table 1). The cis $\mathrm{P}-\mathrm{Cr}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles are more acute than those involving the Cl atoms, which is evidence of the constraining effect of the ligand coordination to the metal center. The $\mathrm{Cl} 1-\mathrm{Cr} 1-\mathrm{P} 1$ angle is nearly linear and the $\mathrm{Cr}-\mathrm{N}, \mathrm{Cr}-\mathrm{Cl}$ and $\mathrm{Cr}-\mathrm{P}$ distances cover a relatively small range.

Experimental

Compound (I) was obtained by mixing $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{~g}$, $0.4 \mathrm{mmol})$ and $\mathrm{PPh}\left(2-\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}(0.117 \mathrm{~g}, 0.4 \mathrm{mmol})$ in 20 ml

Received 17 August 2006
Accepted 28 August 2006
\qquad

metal-organic papers

acetonitrile. The mixture was stirred for 24 h at room temperature. The green precipitate obtained from the reaction, partially soluble in acetonitrile, was separated from the solvent and washed three times with dichloromethane for purification purposes. Diffraction-quality crystals were obtained by slow diffusion of diethyl ether into a concentrated acetonitrile solution of (I) in the presence of air.

Crystal data

$\left[\mathrm{CrCl}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{P}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=491.71$
Monoclinic, $P 2_{1} / n$
$a=11.0206$ (12) \AA
$b=16.1145$ (16) A
$c=13.0390$ (14) \AA
$\beta=107.081$ (4)
$V=2213.5(4) \AA^{3}$

Data collection

Bruker APEX X8 diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.697, T_{\text {max }}=0.859$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.086$
$S=1.03$
5487 reflections
254 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.476 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Block, green
$0.27 \times 0.19 \times 0.16 \mathrm{~mm}$

21619 measured reflections 5487 independent reflections 4230 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.035 P)^{2} \\
&+0.906 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cr} 1-\mathrm{N} 1$	$2.1352(18)$	$\mathrm{Cr} 1-\mathrm{Cl} 3$	$2.3197(6)$
$\mathrm{Cr} 1-\mathrm{N} 2$	$2.1447(18)$	$\mathrm{Cr} 1-\mathrm{Cl} 1$	$2.3358(7)$
$\mathrm{Cr} 1-\mathrm{Cl} 2$	$2.3171(7)$	$\mathrm{Cr} 1-\mathrm{P} 1$	$2.3502(7)$
			$94.81(2)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2$	$85.21(7)$	$\mathrm{Cl} 3-\mathrm{Cr} 1-\mathrm{Cl} 1$	$81.22(5)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Cl} 2$	$166.73(5)$	$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{P} 1$	$80.06(5)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{Cl} 2$	$89.18(5)$	$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{P} 1$	$85.98(2)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Cl} 3$	$88.68(5)$	$\mathrm{Cl} 2-\mathrm{Cr} 1-\mathrm{P} 1$	$90.87(2)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{Cl} 3$	$169.74(5)$	$\mathrm{Cl} 3-\mathrm{Cr} 1-\mathrm{P} 1$	$173.86(3)$
$\mathrm{Cl} 2-\mathrm{Cr} 1-\mathrm{Cl} 3$	$95.01(2)$	$\mathrm{Cl} 1-\mathrm{Cr} 1-\mathrm{P} 1$	$126.34(8)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Cl} 1$	$96.59(5)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{Cr} 1$	$103.12(7)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{Cl} 1$	$94.07(5)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Cr} 1$	$102.11(8)$
$\mathrm{Cl} 2-\mathrm{Cr} 1-\mathrm{Cl} 1$	$95.79(2)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{Cr} 1$	

Figure 1
A view of the molecular structure of (I); displacement ellipsoids are drawn at the 50% probability level and H atoms are not shown.

All H atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$) and refined in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {iso }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

The Bruker X8 APEX diffractometer was purchased with funds received from the National Science Foundation Major Research Instrumentation Program Grant CHE-0321214. KK thanks the Robert A. Welch Foundation for support (AA1508).

References

Bruker (2003). APEX2 (Version 1.0-28) and SAINT-Plus (Version 6.25). Bruker AXS Inc., Madison, Wisconsin, USA.
Gavrilova, A. L. \& Bosnich, B. (2004). Chem. Rev. 104, 349-384.
Lindner, E., Rauleder, H. \& Hiller, W. (1983). Z. Naturforsch. Teil B, 4, 417425.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany .
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

